$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
lo	moderate	considerable	high	ver high

Treeline

Ne sno

	2600m 2200m
Persistent	
ea laer	

2400m

liding sno

As a consequence of snofall and the strong to storm force ind, a sometimes critical avalanche situation ill develop.

The fresh sno as ell as the ind slabs that are being formed b the strong to storm force northesterl ind can be released b a single inter sport participant in all aspects above the tree line. As the precipitation becomes more intense individual natural avalanches are possible, even medium-sized ones.

Avalanches can in some places be released in deeper laers, even b a single inter sport participant. This applies on steep est, north and east facing slopes beteen approximatel 2200 and 2600 m . Avalanches can in some cases reach dangerousl large size.

As a consequence of the ne sno there ill be an additional increase in the danger of gliding avalanches, in the regions exposed to heavier precipitation especiall on steep grass slopes.

Snopac

anger patterns dp.6: cold, loose sno and ind dp.2: gliding sno
Northern etz and Stubai Alps, arendel Mountains, Tuxer Alps, illertal Alps, ilder aiser Mountainsaidring Alps as ell as enediger ange: 30 to 0 cm of sno, and even more in some localities, ill fall. n the other regions 1 to 30 cm of sno ill fall. The ind ill be strong to storm force over a ide area.

As a consequence of ne sno and northesterl ind, ind slabs ill form in all aspects. The fresh ind slabs are bonding poorl ith the old snopac in particular on ind-protected shad slopes. The are prone to triggering.
n its middle, the snopac is faceted and ea, especiall on shad slopes beteen approximatel 2200

